

Her corverever

P R E S I D E N T
C

0 N

TERRESTRIAL
C O M E T S.
(13)3 3

$$
\operatorname{cec}-1
$$

1781.

CON JECTURES

V ON TH

NATURE AND MOTION
ME TE OR S, WHIERAEE ABOVE THE

ATMOSPHERE.

Bx THOMAS CLAP, A.M. LATE PRESIDENT O Y ALE COLLEGE.

$$
A \quad 0 \quad R \quad W \quad I \quad C \quad H:
$$

 3. $D \subset C, 2 \times \times \times 1$.

1731

C O N J E C T U R U P O THE

- F
$M \quad \mathrm{~T} \quad \mathrm{E} \quad \mathrm{O} \quad \mathrm{R}, \quad \& c$.

UP O N feveral obfervations made upon fundry Meteors, which have appeared in Europe and New-England, I have collected the following general phrnomena:
I. THEY appear like round balls of fre, or globes of red hot iron, or white hot iron, ready to melt, as large as the fun or moon, in the meridian, commonly furrounded with a flame which appears like a tail, with ftreams and fparkles not fo bright as the body. They frequently exceed the light of the moon, and in fome inflances that of the fun, fo as to make a hadow in the cleareft funfline.
II. These Meteors, have been feen paffing through the air, at all points of the compafs, over a fpace of ground above 100 , and fometimes above 500 miles long, and above 100 miles wide, with an exceeding great velofity. I could never gei obfervations accurate enough, to determine the velocity with any degree of exactnefs. Doctor Halley fuppofes it to be above 300 miles, and Doctor Pringle about 1000, in 2 minute. I rather fuppofe it does not exceed 500, for the reafons heseafter mextioned.
III. To each particular perfon obferving, who ftands in or near the line of their courfe, they feem to rife while they are coming towards him, and to fall when they are going from him, as the fun rifes and fets, feerningly at a fmall difiance. But by comparing the obfervations made by feveral perfons ftanding a little out of the line of their courfe, at the diftance of 50,100 , or 500 miles from each other, it appears that at their firft approach or appearance they are 50 or 100 miles diftant from the earth ; then they come within 20 or 30 miles of it; and afterwards are at the diftance of 50 or 100 miles again; which different diftances feem to arife principally from the curvature of the earth. O z if thefe feveral diftances of any one Meteor have not been accurately determined on both fides of its neareft approach, yet it is evident, that fome Meteors, during the time in which they have been obferved, have been coming nearer to the earth, and others going farther from it.
IV. Thrse

(6)

IV. These Meteors, in their tranfit, make a continual whizzing or humming anife; or, as fome fay, a noife like a great number of drums, or guns, or diftant umbling thunder; which is heard prefently after they pafs by. And about the time they come neareft the earth, or a little after, the body of the Meteor feems to burft like a bomb, with a great explofion of flames, Atreams, and fparkles; and prefently after there is a very loud noife, Smecimes like terrible thunder, fo as to Thake the ground and houfes, like an carthquake, or like the report of a very large carnon near at hand; or, as fome fay, as loud as a thoufand cannon fired together, at 20 or 30 miles ditance. And when it is cloudy, noiles like diffant cannon, or sumbling thunder, have been heard paffing through the air, without any diftinct light.
V. Although thefe Meteors, by reafon of their extreme velocity and great diftance, gencrally become invifible in about a minute after they pafs by; and as they recede from any perfon, prefently make but a fmall angle with the horizon, and feem to be fuddenly intercepted by horizontal clouds, houles, \&c. yet there is no fuffi ient evidence that any of thefe high Meteors, which have moved 100 miles or more, ever did really fall to the ground, or become wholly extinct; though atter the emiffion of fo much of their fire in the explofion, they are not fo bright, and have no flame or tails.
VI. These Meteors generally appear as often or oftener than once in 20 or 30 years. Near ten of them have been feen in England within thefe 100 years; as related in the Phi of. Tranf. Abr. vol. II. page 200; vol. IV. by Jones, part II. page$134135,136,137,156$; vol. VIII. Pake 121,123 ; with that in 1758 , ingeni-
oufly created upon by Dector Pringle. Three or fur fuch Meteors have been oboufly created upon by Dector Pringle. Three or fur fuch Meteors have been obfe ved in New England within thefe 50 years; but as they have teen generally fuppofed to be of the fame nature with thunder, lightning, thooting fars. and fuch ike lower Meteors, which feem to have no exiftence above two or three minutes, there have not been fuch critical obfervations made upon them as I could wifh may be made hereafter: Yet thefe general phonomena, I take to be as certain as can ordinarily be collected from fuch fudden, tranfient, and unexpected obfervations, genesally mide by the lower fort of people: A ad have therefore been led to conjecture a new Theory of he nature and motion of thefe high Meteors.

Now to allign a natural caufe or reafon for any thing, is to refolve it into the gene:a laws of nature, by which the wife Creator governs the world; and to thew its connection with other things, according to thofe general laws by which we find the univerfe is governed, fotar as we are acquainted with it. And the fewer laus we have recourfe to, which will folve all the apparent phxnomena, the greater is the probability that we have hit upon the true theory. And,
I. If the apparent diameter of thefe fiery globes is equal to thofe of the fun or moon, in the meridian, and fubends an angle of above haif a degree, at the diftance of 50 miles from the obferver, then is is evident that their real diameter is half a mile at leaft.
II. It feems evident that thefe globes are folid and firm, at leaft as to the ex. beinal parts.
I. BECAUSP, they preferve their globular fhape and motion throughout their Whale comse, and after the expicfion. For if they confited only of inflammable
matrer,

7)

matter, of the nature of pulvis fulminans, or a train of gun-powder, fired at one ed, (as fome of the lower Meteors feem to do) there would be no probability thas they would invariably preferve their exact globular flape; but would melt down, burn up, or diffrate with fuch an intenfe heat, at mult caufe or accompany fuch a valt explofion of flame and found.
2. Because, they are ftrong and firm enough to withfand the force of fo great a fhock as is given at the explofion. The noife is generally reprefented as being equal to loud thunder, a large cannon near b_{v}, or a thoufand cannon at the diftance of 20 or 30 miles. And I luppofe that a thoufand cannon fired at the diftance of 25 miles, give juft as loud a report as one cannon at the diftance of a quarter of a mile. The gieatnefs of the exolofion being in a fefquiplicate ratio of the diftance heard *. And if the Meteor is about 30 miles high, where the atmofphere is 500 times more rare than it is upon the earth, in order to produce the fame found to our ears, it muft be equal to 500,000 cannon fired upon the earth. And if this cáplofion is made by an elaftick fuid, as vioent as gun powder, then the matter of this globe muft be as firong and firm as the iron of cannon, and the fides of the fame proportional thicknef, which is about go rods, in order to fand fuch a violent Mock. If this explofion is caufed by an elaftick fluid, of the nature of electrical fite, as I fhall afterwards Shew, then the firmnefs of the glote mult be almoft the fame. For when a body is charged with it, at or near the inflant when it is difcharged, the fire is retained in itwith as great a force, as that with which it is ditcharged, or would frike againft another body. So that the force with which the fire goes out, by any elaftick fpring, or repulfive power, is impreffed on the body it leaves. Or if it be drawn out by the attraction of fome other body, the force of that attraction is taken off from the body it leaves, which will have the fame eff cls upon it. And hence a large phial or jarrs when it is overcharged with eledrical fire, will fometimes burf, like a bomb, and that although it was ftrong enough to withftand the welght or expanfion of the air, which is $\mathbf{s} 5^{\text {lib }}$. on every fupe ficial inch; and fuch a preffure upoa a fphere half a mile in diameter, will lie ab.uve $5 ; 000,000 \mathrm{lb}$

If it fhuuld be objected, the clouds are not folid bodies; and yet they emit a vio. lent explofion;-..to this I reply, that the expiofion of thunder and lightning is but very fmall, in comparifin with that of a Meteor; for, thunder is rarely hea!d 10 miles, whe:eas, a Meteor may be heard above 100; and the thunder mult be within half a mile, to be heard as loud as a Mereor at the diftance of 30 . And upora computation of the different diftances and sarity of the air, it will appear, that the explofion

- The undulations of found are prepagated from a fonorific body in consarie Bells, ins. ereafing very mucis like the blowing up of a biadder. The whole prefure of the ait upion the infice of the foll,, is equal at all magnitudes, taking the whole Jhell together; out lifler upon each paricular part or jpor, as it grows tigger. T'the magnitude of the found is ins proporion to the soled content of the jpherical 乃oll; and the suatibility of it (at a. y particular difance) is in proportion to the prefiure upin any particular part,' at that difance. Therefore, as the folid content of the jpbitre is to the fuperjfices, or as the cube of any nurnher is to the Square of the fame number, So is the masnitude of a found to the diftance beard. Or multrply the diftance by the Squali root of i itjelf; and it gives the magniluae of the fousd.

| Cube. 1 | 8 | 27 | 64 | 125 | 216 | 343 | 512 | 729 | 1000 | Magnitude. |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Square. 1 | 4 | 9 | 10 | 25 | 30 | 49 | 04 | 8 | 100 | Di Iance. |
| Root. | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | Thbss. |

explofion of thunder is not a 10,000 th part fo great as that of a fuperior Meteor and yet a cloud, containing $5,000,000$ tuns of water, when it difcharges its electrical fire, recoils as much as a cannon, in yoportion to its weighs, and is fo violeatly agitated, that the fmall bubbles are fuddenly dathed together into drops, which im. mediately fall down in rain. And if the explofion of a Meteor is fo great, when the noife heard is only equal to the report of a fingle cannon near by; how great mult it be in thofe inflances, where it caules an earthquake 40 or 50 miles round? It feems impoffible that there fhould be fuch a prodigious forcible explofion, without making an alteration in its perfect globular fhape, unlefs it be very rigid and firm*.
3. Their folidity appears from their extreme velocity for many hundreds of miles: For, if a meer flame, fmuke, or powder, or any thing not ftrongly cemented cogether, was fhot out of a cannon at the velocity of 500 miles a minute, it would immediateiy difipate or diffolve: Or, if fo great a body fhould continue together, it would neceflarily drive before it a large co umn of air, which, by the refiltance of the ris inertic, would be extremely condenfed, and the friction of it, by the fides of the Meteor, wouid prefently wear it away, unlefs it was very hard and firm. The round ball always runs away, and leaves the flame, tail ansif parkies behind it; jutt as a cannon ball leaves the fire and finke, or the nucleus of a comet runs hefore its tail. Upon theic confiderations, it feems evident, that the globe of thefe Meteors is a firm, folid fubtance; at leaft, as to the external part. I would, then, obferve,
III. There is a continued whizing, humming, or rumbling noife, like diftant drums, guns, or thunder, made by thefe Meteors, and heard prefently after they pafs by, about a quarter fo loud as the explofion: I fuppofe this is caufed by the friction of the Meteor upon the aimofphere;--for a cannon ball, of fix inches in dianieter, pafing through the air, with 1-25th part of the velocity of the Meteor, will make a humming nuife, which is generally heard two miles. Now, if we maltiply the Iquate of the difference of the velocities, into the quare of the difference of the diameters, we fhal find that the refiltance of the air upon the Meteor is, to that upon a cannon ball, as $17,000,000,000$ to 1.7 And $6,700,000$ being the fquare of that number of which $17,000,000,000$ is the cube, will repretent the proportion of the diftance in which the humming of the Meteor will be heard farther than that of a carinon-ball: And being diminifhed to a 500 ch part on accouns of the ratity of the atmofphere, the proportion will be as 13,400 to 1. And becaufe the humming of the

Thus in the explofon of gun-powder: fuppofing 31 cubic inches to e pound.
$\begin{array}{lllll}\text { Quantity. I Cubic inches, } 1 & 310: 1016 & 620: 2016 & 930: 3016 & 1240: 401 \mathrm{~b} \\ \text { Difance. } 1 \text { Miles, }-11-2 & 68 & 109 & 141 & 173\end{array}$
So the found of a bell according 10 its weight.

| 2uantity. $16 z$. | $16: 1 \mathrm{lb}$. | 10016. | 5001 l. | 1000 lh. | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Diftance. | 5 roás. | 30 | $640: 2$ miles. | $1890: 6$ | $3000: 9$ |

Mountains, contrary or confufed winds, and fuch accidental caules, may fomtzmes interrupt the found, fo as not always to be beard exactly in ibis, proportion.

* Since thefe balls of fire bave been obferved to accompany eartbquakes, I would propofe it, to be confidered, wobether the explofion of Meteors may not ofientimes be the canfo of: carthquakes, as well as the eruption of Jubierranoous fres.
+ See Nerviton's Princip. Matb. Rook II. Prop. 35. Cor. 5.

(9)

The eamon-ball is heard but a 50 :h part fo far as the repart of a cannon, that number mult be divided by 50, whith will make the huming norfe of the Mereo: equal so the report of 268 cannon, a the diftance of 25 miles. And the exptrfin of the Meteor being reptefented to be equal to 100 cannon at that diftance, the hummingnoife will be it $4^{\text {th }}$ part of it. And shis humming norfe will be lefs, as the diftance or altitude of the Meteor is greater.
IV. The great explkfion and flame attending thefe Metcors, is caufed by the difcharge of electrical file, collected by the friction of the armofphere, and emitted about the time, or a littie afer, it approaches neareft to the earth, and becomes overcharged. I fuppofe electrical fice is not eflentially different from commen fire, 2nd is a kind of univerfal element diffuted, in fome degree, into almoft all bodies in the univeife, and, by friction, may be collected into a much greater quantity in fome paticular bodies: And, when the whole fuddenly ruthes cut in ore place or ftream, tis there fo greatly collected or condenfed, like the rays of the fun in a focus, that it becomes common fire, capable of inflaming any combuatible matter; and, by the extreme celerity of its motion, fo violently agitates the air, as that its elaftick fpring becomes fenfible to the ear. Common experience teaches, that when a colliction of vifible fire is once begun, the fietion of the air upon it, at the velocity of half a mile a minute (as in the blowing of a pair of bellows) will irflame and increafe it to a very great degree: Atid, therefore, it is reafonable to fuppofe, that the friction of the air, at the velocity of 1000 half railes in a minute, (the force of which is $1,000,000$ to 1) will collect fire whe'e it was not begun bcfore, or but in a low degree; as all bodies grow warm by fretion: And, we find by experience, that fire is often colle Eted by foft bodies, which do not make fo great a reffitance as condenfed air, though moved with a velocity much lefs than that of a Metcor.... Dr. Buerhave, on Chymifry, page 249, fpeaking of collecting fire by friction, fays, "The " Iurfaces of swo todies being applied together, one may pafs fo fwiftly by the other, "t as that nothing but fie, the fivifefl body in nature, can fucceed immediately into "the vacant places; and by that means it becomes collected, in the path of the "t moving body, and fo it has, as it were, a fiery atmofphere around it. And, "(page 231) chat balls exploded in the night, out of great guns, grow hot in their "paffage through the air, fo as fometimes to appear ignited." And if a cannonball wiil collect fome vifible degree of eltetrical fire, then the Meteor, which has abe twenty five times the velocity, and contequently above fix hundred times the friction, may collect fuch a quantity of electrical fire, as may be fuffient to ar.fwer ali the phxnomena. For a foft piece of leather moving upon an eiectrical globe or tube, with the velocity of two and an half feet per fecond, or 150 feet, which is a thirty fifth part of a mile, in a minute, will collcet a large quancity of electrical fire in a very flort time. And 1 fuppofe 150 fuperfictal inches of leather, paffing over an electrical globe or tabe, with the velocity of 150 feet a minute, and each inch P:ffed with a force equal to the weight of one pound, will be fufficient to raife a large fpaik or fnap of electrical fire; efpectally after the globe is once fufficiently warmed. The motion of the leather being at the rate of a thirty fifih part of a mile a minute, and that of the Meteor 500 miles, the proportion of their velocities is as 1 to 17,500; and the momentum or effect produced will be juft the fame, whether we take the number of pounds weight in the air (preffing apon the globe) at the velocity of the Meteur, or elfe 17,500 times fo many pounds at the velocity of the leather..

A eloze paffing very fwiftly through the air, dives before it a column of air alo moft equal to itfelf. The elaftick force of the air will not be fuffictent to overcome
its vis inertiz, fo as fuddenly to protrude the air much before it, or on either fide: By the motion of f and, we fee that the elattick fpring of the air will not mave it more than 12 miles in a minuse, whith being not a tortie:h part of the velocity of a Meseur, is ver inronfaderable in this cafe. And as etion and re ction are always equal, the vis inerix the air, and the velocity communicated to is, by its refifance agaist the Meteor, m kes the fame action upen the Merteor as it would do if the air ws non elaftick*. The Meteor in two minures moves chrough a cylinder of aif $s 000$ miles long and half a mile in diameter; which deisg raken one place wich another, 500 times rarer than common air, is equal in wright 10 two miles of common air or 12 teet of water; which, upon computaion of 7 Clb. for every cubic foor, is 5,000,000 000lb. As the Meteor moves 17,500 times fafte: than the icaither on the tube, musuply the number of pounds by that sum, ard the product will be $87,5 \mathrm{co}_{2}$ 000,000000 , equal to the number of pounds, moving with the velocity of the leather, which being divided by 150 lb . (which make one electrical fnap) the quotient will be $583,000,000,000$, the number of eiectical faaps collected.

And that the Meteor will contain fuch a quantity, is evident, becaufe a phiaf holding a pint charged with electrical fire, will give a fnap which can be heard 50 feet, or 100 h part of a mile. A cannon is heard 100 miles, which is 10,000 times fo far as the phial; which being multiplied by the fquare root of itfelt, gives the quantity of the explofive force, or found, which is heard f far. Then $10,000 \times 100=$ 1000,000 , the number of eleftrical fraps which are equal to the report of a cannon, and confequently $500,000,000000$ fnaps are equal to 500,000 cannon. N w the Mereor being a fphere haif a mile in diameter, contains $574,000,000000$ pints, which will give the number of fnaps before mentioned fqual to 500,000 cannon; befides a feventh part overplus which may remain in the Meteor.

And to fhew that $1,000,000$ electrical fnaps are equal to the repert of a cannon: I fuppofe that a quantity of powder equal to a cube of near 1 roth part of an inch, on cach fide, being fired out of a proper inftrument, will make a report which may be heard 50 feet, like an eledrical fnap; and $1,000,000$ fuch quantities, which is abous zoib. being fired out of cannon, will be heard 100 miles.

As all thefe proportions agree among themfelves, it is probable they may be neas the truth; but if they are not, they will equally ferve to ead the mind into a conception, how it is poffible thas fuch a vall fond bedy may be fo charged with electrical fre, as to give an explufion equal to the report of a cannon near by, or to toco cannon at the diftance of 30 miles.
V. This mighty body, which if it be near as folid as iron, muft weigh about $2000,000,000$ tons, cannot be railed up, near 100 miles from the earth, by any laws of nature that we are acquainied with. Water, when rarified into the finelt milts or bubbles, cannot be carried up above 3 or 4 miles by the weight of the atmofphere; and when it is condenfed to about an 800:h part of the weight in its nasural flate, it immediately falls down again. Much lefs can it be catried up 40 miles where the air is near 3000 times as light. And it feems abfuluely impoffible, that it hould be carried up 100 miles, which is double the utmoft extent of the atmolphere. Or if we could fuppofe it poffible, that any kind of matter cuid be rarified fo as to be carried up fo high, yet when it comes to be confolidated, a thuufandith part fo much as thefe Meteors, it muft fall directly down.

(11)

VI. Ir is beyond the power of any laws of nature, already known, to give fuck 3 heavy body foch a prodigious projectile velocity, above 20 times fo great as that of a cannon ball; and by multiplying the difference of their weights into the difference of their velocities, it appears that the momentum or force impreffed malt be above $3,000000000,000$ fo great. All other bodies moving in the univerfe, that we know of, were at faff tet in motion by the immedia.e hand of the omnipotent Cureaton ; and are fence continued in motion according to the fipple laws of projectile ami. -petal force: And as our fureft reafoning in the fe things is by way of ana $\log y$, according to the known laws of nature, we mut conclude that the fe Meteors. are governed by the fame general law'; and as all the cœellial bodies, are fo remote that they can have no fenfible influence upon them, when they are within roo miles of the earth, it is evident that the earth milt be the attractive central body, round which they revolve; as the-fecondary planets revolve round the primary', or rather as comets revolve round the fan in long elipfes, near to a parabola.
VII. If shall therefore calculate the motion of there Terreftrial Comets round the earth, on the fame principles as Doctor Halley calculates the motion of comet round the fun.

1. A $B O D T$ revolving in a circle, at the diftance of 4000 miles from the centre, Which is about 25 from the furface, will perform its revolution in 84 minutes. For as the cube of the moon's diftance is to the fquare of its periodical revolution in minutes, fo is the cube of 4000 to the square of 84^{\prime}, which is 300 miles in a minote: But if it revolves in ar. elipfes, near to a parabola, its velocity is augminted as 7 to io, nearly, and will be 428 miles in a minute: The annual and dis ural motion of the earth may make a fall difference.
2. As the area of a circle 0,35 is to 84 minutes, fo is $1-3$ d to 35°, the time in which it will deferibe a quadrant or a parabola, with the velocity of a circle.
3. As the fquare root of 2 is to s , fo is 35 minutes, the time as in a circle, to 25', the time as in a parabola. Therefore, the Meteor defcribes a quadrant, $6^{\circ} 6^{\prime}$ an of mean motion, in 25°, which is 4 degrees of mean motion, and $6^{\circ} 6^{\prime}$ angular motion from the perihelion, in one minute. Upon the fe data I have calculated the following table of the motions of this Terrefrial Comet. The firft column contains the minutes of time before and after the perihelion or perigee: The fecund, the degrees of mean motion: The third, the degrees of angular motion: The fourth, its difance from the centre of the earth: And the fifth, its diftance from the fur face of the earth, fuppofing its leaf diffance, at the perigee, is 25 miles: The sixth, its motion from the perigee, in its orbits, in miles.

To a perfon who flatids at the perigee, at the diftance of 428 miles, it will appear alenoft as the burszino

Ters calculation feems to aniver exacly to all the apparent motions of the fe Tef: sefrial Comets, and particularly that ther appear filf to be 50 or 100 miles diftant from the earth, then, in their courfe, to come within 20 or 30 miles of it, and af. terwards are at a greater diftance again; as may be clearly feen in the delineation annexed : It alfo feems to decermine its real velocity with a greater piecifion than the moft critical obfervations histherto made: Fur, if it moves lefs than 300 miles in a minute, it mult, in a little time, fall to the earth; and if it moves more than 428, is mult gocit in an hyperbola.

THE preceding calculation is founded upon the known laws of motion, in which we cannot te miltaken; but we have room for different conjectures about the number and periodical reyolutions of thefe Terreflial Comets; yet we are circumfribed. within ceriain limits. On the one hand we mult not fuppofe that their number is fo. great, or that their periodicat revolutions are fo friequent, as to exceed cbecrvation : On the other hand we muit not fuppofe that their periodical revolutions, and tranfverfediameter:, are fo gient, as that, in their apogee, they would be in danger of boing carred away, or greaily dillurbed in their motion, by the attraction of Venus, or any other coeleftial bedy. It feems moft natural to fuppofe, that there are more than one, and that their orbits are very differentiy fituated, like thofe of the folar Lome:, in order to acceunt for their duff reat motions to al parts of the Heavens : Th:ugh, if we Mould fuppefe that the e is but one only, it fee:ts poffitle that all thefe various motions might be acccunted for, by the diurnal and annual motion of the earth, and the coritant actraction of the moon, in its various longrucies and latitudes, up n the Meteor, in the feveral parts of us orbi ; which muit conitantly change the lituation of it, and mas pffibly, in length of time, carry its inclination, apogee and nodes, to eye y pat of the Heayens. B the obfervations which have been made, it feems evident, that one has been feen in each country, offener that on e in 30 years. Upon the uace fact the terreftrial globe, tnerefare 1000 countities, each abuu 500 mile quare; fo that 30 of them may appear fomewhese in the world within the compats of a year, and yer ot be f an each particular coultry fo often as once in 30 years. Let us, then, corjocture ior the prefent, util we have farther light by inure accurate obfe vatioass, thar there are 3 fuch Comets revolving round the carth, whofe miean diftances are about as great as he moon's, and, therefere, pestorming abour 30 revolustons in a year; then one ot them will appeas in each cruntry of 500 m mes quare, once in 27 ycars: And fo ofien, at leaf, they have been in fact feen in Uid England and New. This conjecture, I think, will fuily folve all the various p 价 omena of chée Meceors which have huberio been obferved. And if their peridical revou iows are once in a month, they will lofe but litte of their heat in their apogee, and fo will be prepared to rective and emit a large quantity of fire when they come near the earth: Indeed, by their friction upua the atmofphere, they will lofe near an hundedth part of their velocity, and fo, in length of time, will be in danger of failing to the earth, fooner than the planets are of falling to the fun. But this may, in fome meafure, be pievented, by the gieater density and prefure on the lower fide- the explafion towards the earth may caufe it a little to recoil fromist; ... and a wife Providence may fo order the fituation of their orbits, as that once and a while the attraction of the moon, or fome other heavenly body, may accelerate their motion and enlarge their orbits. As Mr. Whifton fuppofes, the Comer, at the finod, accelerated she motion of the earth, and made its apanal revolution 5 daye and a quarter longer than it was before.

$13)$

Ovr obfervations have heretofore been fo imperfeet, as that we cannot eafily decermine minute circumftances; but the general theory feems highly probable, if wot certain, that thefefuperior Meteors are folid bodies, half a mile in diameter, revolving round the earth in long elipfes, their leaft diftance being abour 20 or 30 miles; that, by their friction upon the atmofphere, they make a conftant rumbling noife, and collect electrial fire ; and, when they come neareft to the earth, or a litcle afier, being then overcharged, they make an explofion as loud as a large cannon:

I shall add one conjecture refpeeting the ufe and benefit of thefe Meteors....-It is poflible that, by their violent explofion and agitation, they may cleanfe and purify the air, and render it more falabrious to mankind; much more than thunder and lightning. There is an obfervation in the Phil. Tranf. Abr. Vol. VIII, page 519, which feems much to favour this conjecture; it is in thefe words: "A Meteor was " Yeen over England and Ireland, and at Venice, at the fame time: It appeared " like a great ball of fire, which burft with an explofion which fhook great part of "the Inand, and feemed to fet the whole atmofphere on fire. This Meicor putan "end to the Catarrh and Diarrhea, and reftored a general health.".

The line A B, reprefents part of the eanth's circumference.
The line $C D$, reprefents the top of the atmofphere.
The figures 123 , reprefent the diftance of the Meteor, in minutes of time, from the perigee.
SCALE, 200 miles to an inch.
If the leaft ditiance of the Meteor from the earth, at the perigee, be 20 miles; then its diftance from the perigee and from the
carth in the feveral minutes and parts of a minute of time, from the perigee, will be as follows :

[^0]
e/I.5

29328
apain 1943
armes de. Conem

[^0]:
 Diftance fromperigee. | 0 | $1107|214| 321|428| 535|642| 748|854| 900|1067| 1174|1280| 1385|1490| 1595 \mid 1700$ Difance fromeartb. $120|20,7| 22,8|26,4| 31,4|37,8| 45,5|54,6| 65,2|77,1| 192,2|104,8| 120,7|138,1| 156,81175,9 \mid 196$,

